
David A. Provenzano, MD*; Timothy Deer, MD†; Amy Luginbuhl Phelps, PhD‡; Zachary C. Drennen, BA*; Simon Thomson, MBBS§; Salim M. Hayek, MD, PhD¶; Samer Narouze, MD, PhD**; Maunak V. Rana, MD††; Tyler W. Watson, BA*; Asokumar Buvanendran, MD‡‡

Objectives: Surgical site infections (SSIs) are associated with significant healthcare costs and morbidity. Limited research exists specific to the prevention of spinal cord stimulation (SCS) SSIs. The objectives of this international survey were to examine current infection control practices for SCS trials and implants and to compare reported responses with evidence-based recommendations.

Materials and Methods: A 33-question survey was developed based on an extensive literature review for infection control policies. The survey was hosted on the Internet. Dispersion of the survey occurred through professional associations and device manufacturers. Responses to 15 questions directly related to defined CDC, NICE, and SCIP evidence-based infection control practice recommendations were classified as either compliant or noncompliant. The survey was open for 20 days. Responses also were grouped and analyzed based on geographic location, practice location, and procedural volumes.

Results: Five hundred six physicians responded to the survey. Compliance rates for CDC, NICE, SCIP infection control practice recommendations were low with only four of the 15 questions having compliance rates ≥80%. Areas associated with high levels of noncompliance included weight-based antibiotic dosing, hair removal strategies, double gloving, surgical dressing, skin antisepsis agent selection, and postoperative continuation of antibiotics. Geographic and practice type variations existed for particular infection control practices. Procedural volume influenced operative implant times with low physician procedural volumes associated with extended operative times.

Conclusions: The survey provided significant insight into current practices and will assist in the development of specific SCS infection control policies. Based on the survey, further education is warranted on infection control strategies for physicians performing spinal cord stimulator trials and implants.

Keywords: Infection, infection control, spinal cord stimulation, surgical site infection

Conflict of Interest: Dr. Provenzano is a consultant for Halyard Health, Medtronic, St. Jude Medical, and Trevena. Dr. Deer is a consultant, researcher, and speaker for Axonics, Bioness, Medtronic, St. Jude Medical, Spinal Modulation, Nevro, and Globus. Dr. Thomson is a consultant, researcher, and speaker for Boston scientific and consultant for Axonics. Dr. Hayek is a member of the medical advisory board for Boston Scientific, Flowonix, Mallinckrodt, and Neuros, and a consultant for Greatbatch and Globus. Dr. Narouze is a consultant for St. Jude Medical and researcher for Medtronic. Dr. Rana receives research support from St. Jude Medical and Boston Scientific. Zachary Drennen, Tyler Watson, and Dr. Phelps have no disclosures. Dr. Buvanendran is a consultant for St. Jude Medical and Medtronic.

INTRODUCTION

Surgical site infections (SSIs), which represent approximately 22% of all healthcare associated infections, are linked to significant healthcare costs, humanistic consequences, and morbidity (1–3). In the USA and England, SSIs are the second and third most commonly reported infections, respectively (4,5). Recently, significant attention has been placed on the occurrence and prevention of SSIs and the current level of poor compliance with evidence-based guidelines (2). For spinal cord stimulation (SCS), the placement of an implantable device with neuraxis communication makes infection control practices a particularly relevant issue. Although not specific to the field of SCS, evidence-based guidelines have been developed both in the USA and Europe to provide education on methods to prevent SSIs (6,7).
Infection rates for SCS have been reported in the range of 1–10% (8). Two large systematic reviews on SCS have reported infection rates ranging from 3.4% to 4.6% (9,10). Furthermore, Kumar et al. (11) in a multicenter randomized clinical trial comparing SCS with conventional medical management reported an 8% infection rate that was inclusive of wound breakdown. The infection rates reported for SCS are often higher than those associated with other devices such as total joint replacement surgery which has an average rate of infection of 2% (12). SCS infections can have significant consequences including epidural abscess and the ultimate removal of the implantable device (13).

Unfortunately, limited research specific to SCS exists to help guide and improve evidence-based infection control practices to reduce the occurrence of SSIs. Currently, infection control practices are extrapolated from well-developed practices from other surgical fields. Approximately 14,000 SCS implants are performed worldwide each year for a growing range of indications (14). This accelerated interest in the field has led to the need to better understand common practices among SCS proceduralists and to develop neuromodulation-specific infection control guidance.

The purpose of this study was to examine current infection control practices for SCS trials and implants through the use of an international survey. A second purpose was to compare the results with current evidence-based recommendations.

MATERIALS AND METHODS

A 33-question web-based survey (Appendix 1) on perioperative infection control practices (preoperative, intraoperative, and postoperative stages) for SCS was developed based on an extensive literature review through PubMed used to identify relevant journal articles published from 1967 to June 2013. Key search terms included SCS, SSIs, antibiotic prophylaxis, antimicrobial prophylaxis, implant infections, total joint arthroplasty infections, spine surgery infections, SCS system infections, methicillin-sensitive *Staphylococcus aureus* (MSSA) decolonization, methicillin-resistant *Staphylococcus aureus* (MRSA) decolonization, preoperative antiseptic showering, preoperative hair removal, skin antiseptic preparations, surgical gloves, wound irrigation, surgical closure, and incision care. The literature review consisted of defining key recommended areas for implementation of evidence-based infection control interventions from both standard surgical guidelines including the Centers for Disease Control and Prevention (CDC) (6), National Institute for Health and Care Excellence (NICE) (7) in the United Kingdom, Surgical Care Improvement Project (SCIP) (15,16), and other surgical subspecialties recommendations (17,18). Manuscript authors refined survey questions to allow for the investigation of important surgical infection control practices. Six of the 33 questions gathered demographic and practice pattern data, while the remaining 27 questions investigated infection control practices.

Following Institutional Review Board approval (Robert Morris University), the survey was hosted on the Internet. A link to the online survey was dispensed with the help of various professional organizations including the American Academy of Pain Medicine (AAPM), American Society of Regional Anesthesia and Pain Medicine (ASRA), The European Society of Regional Anaesthesia and Pain Therapy (ESRA), International Neuromodulation Society (INS), and device manufacturers (Boston Scientific, Medtronic, and St. Jude Medical). The survey was carried out for 20 days (October 17, 2013, to November 5, 2013).

The 27 questions investigating infection control practices were divided into four areas: 1) preoperative practices; 2) intraoperative practices; 3) postoperative practices; and 4) infection control practices requiring further research. In order to highlight areas of compliance and noncompliance with the defined practice recommendations (CDC, NICE, and SCIP), the responses to 15 questions (questions 1, 2, 3, 4, 5, 6, 14, 17, 22, 23, 24, 25, 26, 27, and 28) were identified as either compliant (correct response according to recommendations) or noncompliant (incorrect response according to recommendations). Areas of compliance were defined by ≥80% participant compliance rate for the defined practice question, and areas of noncompliance were defined by <80% participant compliance rate for the defined practice question.

In order to assist with analysis, the demographic group data were refined and organized. Physician yearly procedural volumes for spinal cord stimulator trials and implants were classified into the following groups: 1) low volume, ≤10 trials or implants; 2) medium volume, >10 and ≤40 trials or implants; and 3) high volume >40 trials or implants. Geographic location organization was defined as USA, Europe, or other, which included data from North America—Other, South America, Africa, Asia, and Australia. The other group classification was created because of the low response rates (≤1.63% for each group) in each of these geographic subsets. Practice location organization was defined as academic practice, hospital-based program, and private practice that consisted of the private solo practice and private group practice groups. Operative times were classified as follows: ≤60 min, >60 min and ≤90 min, and >90 min (combining responses from >90- and ≤120- and >120-min selection categories).

Statistical Analysis
The data were analyzed descriptively and expressed as percentages of the total number of returned valid responses for each question. All confidence interval estimates were calculated using a 95% level of confidence. Sample sizes related to each of the 33 questions are recorded in parenthesis either alone or with a corresponding confidence interval. For the identified 15 questions specifically addressing compliance with defined practice recommendations, compliance rates between geographic location, practice type, and procedural volume were analyzed using a chi-squared test for independence for questions resulting in an adequate number of responses in each category. A chi-squared test also was used to investigate a significant relationship between operative times and procedural volume. For questions resulting in low cell count categories, chi-squared tests were combined, and a Fisher’s Exact test was performed. All tests assumed a 0.05 significance level. Given that a statistically significant result between three groups (practice type, geographic location, or procedural volume) was observed, post-hoc analyses to compare pairwise significant group differences used a 0.02 level of significance to adjust for multiple comparisons. All descriptive statistics, tables, and pie and bar charts were calculated and constructed in Excel (Microsoft, Redmond, WA, USA). All chi-squared tests of independence, Fisher’s Exact tests, and confidence intervals were performed in StatCrunch™ (Integrated Analytics LLC/Pearson, Boston, MA, USA).

RESULTS
Demographic and Practice Description Data
A total of 14,819 survey links were dispersed to physicians through an introductory statement by either email or mailed letter (only for Boston Scientific) with the following breakdown: AAPM, 1616; ASRA, 2841; and INS, 1391. The device manufacturers distributed 8971 surveys. ERA assisted with notification of the survey link through its website (http://erasure.org/). Because of overlapping distribution lists, an accurate response rate could not
be calculated. When available, the open rate (number of survey emails opened divided by the number of delivered emails) for the survey email was 36.0% for ASRA, 35.8% for INS, and 29.0% for AAPM.

A total of 506 physicians responded to the survey (Table 1); however, all of the respondents did not answer each question. A majority of the respondents were from the USA (83.7%) with greater than 50% of the responders practicing in a private practice setting. A majority of respondents followed a separate trial and implant pathway, 91.5% (CI: 89.0–94.0%, 492). While nearly all of the respondents from the USA reported they use a separate trial and separate pathway, 98.0% of hospital-based physicians (p < 0.001, N = 470 Fig. 1 and Table 2) administered antibiotics within 60 min prior to surgical incision. Although practice type and procedural volume did not influence the time frame for administrative preoperative antibiotics for both trials and implantation stages, the utilization of weight-based dosing was closer to 50% (Table 2). The use of preoperative antibiotics for trials was 86.1% (CI: 83.0–89.1%, 495), while only 44.8% (CI: 40.1–49.5%, 426) reported utilization of weight-based dosing. Similarly, the use of preoperative antibiotics for implants was 96.0% (CI: 94.2–97.7%, 494), while only 47.7% (CI: 42.6–51.4%, 493) reported utilization of weight-based dosing. Geographic location, practice type, and procedural volume did not influence the use of antibiotics prior to SCS trials and implants. However, the employment of weight-based dosing for trials and implants did vary based on practice type. Academic practices were significantly more likely to weight-based dose preoperative antibiotics in comparison to private practice and hospital settings for both trials and implants. For the trial stage, 61.25% of academic physicians used weight-based dosing compared with 37.7% of private practice and hospital-based physicians (p < 0.001, N = 470 Fig. 1 and Table 2) administered antibiotics within 60 min prior to surgical incision. Although practice type and procedural volume did not influence the time frame for administrative preoperative antibiotics for trials and implants, geographic location and procedure type did influence definition selection.

Preoperative Practices

Although greater than 80% of individuals reported utilizing antibiotics for both trials and implantation stages, the utilization of weight-based dosing was closer to 50% (Table 2). The use of preoperative antibiotics for trials was 86.1% (CI: 83.0–89.1%, 495), while only 44.8% (CI: 40.1–49.5%, 426) reported utilization of weight-based dosing. Similarly, the use of preoperative antibiotics for implants was 96.0% (CI: 94.2–97.7%, 494), while only 47.7% (CI: 42.6–51.4%, 493) reported utilization of weight-based dosing. Geographic location, practice type, and procedural volume did not influence the use of antibiotics prior to SCS trials and implants. However, the employment of weight-based dosing for trials and implants did vary based on practice type. Academic practices were significantly more likely to weight-based dose preoperative antibiotics in comparison to private practice and hospital settings for both trials and implants. For the trial stage, 61.25% of academic physicians used weight-based dosing compared with 37.7% of private practice physicians and 44.1% of hospital-based physicians (p < 0.001, N = 470 Fig. 1 and Table 2) administered antibiotics within 60 min prior to surgical incision (p = 0.046).

Of physicians that used preoperative antibiotics for implants (excluding vancomycin), 97.9% (CI: 96.9–99.2%, N = 470 Fig. 1 and Table 2) administered antibiotics within 60 min prior to surgical incision. Although practice type and procedural volume did not influence the time frame for administrative preoperative antibiotics (excluding vancomycin), geographic location did with a larger percentage of respondents from the USA (98.0%) in comparison with Europe (92.9%) administering antibiotics within 60 min prior to surgical incision (p = 0.046).

When vancomycin is administered (N = 496), 92.3% of respondents selected an appropriate consideration for utilization including patients colonized with MRSA, patients with history of infection with MRSA, institutionalized patients, inpatient hospitalizations within the past year, and patients with proven beta-lactam allergy. Only 7.7% of respondents utilized vancomycin for all patients. Only 11.8% of respondents (N = 496) used prophylactic intravenous teicoplanin and +/- gentamicin for antimicrobial prophylaxis.

Figure 2 illustrates preoperative skin preparation procedures. When hair removal is required for a surgical operation, only 73.6% (CI: 69.6–77.6%, 469) of respondents selected a procedure involving electrical clippers immediately before the operation (Fig. 2a and

Table 1. Demographics of Responders.

<table>
<thead>
<tr>
<th>Country</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>0.61</td>
</tr>
<tr>
<td>Asia</td>
<td>0.20</td>
</tr>
<tr>
<td>Australia</td>
<td>1.02</td>
</tr>
<tr>
<td>Europe</td>
<td>11.63</td>
</tr>
<tr>
<td>North America—USA</td>
<td>83.67</td>
</tr>
<tr>
<td>North America—Other</td>
<td>1.63</td>
</tr>
<tr>
<td>South America</td>
<td>1.22</td>
</tr>
<tr>
<td>Total Respondents</td>
<td>470</td>
</tr>
</tbody>
</table>

Number of spinal cord simulator trials, N = 479

<table>
<thead>
<tr>
<th>Trials</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤5 trials</td>
<td>10.02</td>
</tr>
<tr>
<td>>5 trials</td>
<td>14.41</td>
</tr>
<tr>
<td>>10 trials</td>
<td>27.56</td>
</tr>
<tr>
<td>>20 trials</td>
<td>26.93</td>
</tr>
<tr>
<td>>40 trials</td>
<td>21.09</td>
</tr>
</tbody>
</table>

Number of spinal cord simulator implants, N = 470

<table>
<thead>
<tr>
<th>Implants</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤5 implants</td>
<td>15.96</td>
</tr>
<tr>
<td>>5 implants</td>
<td>18.51</td>
</tr>
<tr>
<td>>10 implants</td>
<td>25.11</td>
</tr>
<tr>
<td>>20 implants</td>
<td>26.93</td>
</tr>
<tr>
<td>>40 implants</td>
<td>18.11</td>
</tr>
</tbody>
</table>

Trial and implant pathway, N = 492

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separate</td>
<td>91.46</td>
</tr>
<tr>
<td>Staged</td>
<td>8.54</td>
</tr>
</tbody>
</table>

Operative time implants, N = 478

<table>
<thead>
<tr>
<th>Time</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤60 min</td>
<td>34.10</td>
</tr>
<tr>
<td>>60 min</td>
<td>45.61</td>
</tr>
<tr>
<td>>90 min</td>
<td>15.69</td>
</tr>
<tr>
<td>>120 min</td>
<td>4.60</td>
</tr>
</tbody>
</table>

Not all physicians responded to all the questions. N = Total respondents for each question.

Compliance With Evidence-Based Infection Control Practice Recommendations

The results of the survey were analyzed and compared with current evidence-based recommendations (CDC, NICE, SCIP). Table 2 isolates compliance rates for recommended practices outlined in the survey that are specifically addressed by CDC, SCIP, and NICE. Of the 15 questions specifically investigating defined practices, only 26.7% (4/15) were associated with a compliance rate of ≥80%.

Only 8.35% (CI: 5.8–10.9%, 467) of respondents correctly chose the maximum time criteria of 365 days for defining a deep SSI (an infection extending into the muscle and fascia layers) for an implantable device as defined by the CDC. Of question respondents, 82.9% selected a time frame of ≤90 days after surgery. Geographic location, practice type, and procedural volume did not influence definition selection.

Preoperative Practices

Although greater than 80% of individuals reported utilizing antibiotics for both trials and implantation stages, the utilization of weight-based dosing was closer to 50% (Table 2). The use of preoperative antibiotics for trials was 86.1% (CI: 83.0–89.1%, 495), while only 44.8% (CI: 40.1–49.5%, 426) reported utilization of weight-based dosing. Similarly, the use of preoperative antibiotics for implants was 96.0% (CI: 94.2–97.7%, 494), while only 47.7% (CI: 42.6–51.4%, 493) reported utilization of weight-based dosing. Geographic location, practice type, and procedural volume did not influence the use of antibiotics prior to SCS trials and implants. However, the employment of weight-based dosing for trials and implants did vary based on practice type. Academic practices were significantly more likely to weight-based dose preoperative antibiotics in comparison to private practice and hospital settings for both trials and implants. For the trial stage, 61.25% of academic physicians used weight-based dosing compared with 37.7% of private practice physicians and 44.1% of hospital-based physicians (p < 0.001, N = 470 Fig. 1 and Table 2) administered antibiotics within 60 min prior to surgical incision. Although practice type and procedural volume did not influence the time frame for administrative preoperative antibiotics (excluding vancomycin), geographic location did with a larger percentage of respondents from the USA (98.0%) in comparison with Europe (92.9%) administering antibiotics within 60 min prior to surgical incision (p = 0.046).

When vancomycin is administered (N = 496), 92.3% of respondents selected an appropriate consideration for utilization including patients colonized with MRSA, patients with history of infection with MRSA, institutionalized patients, inpatient hospitalizations within the past year, and patients with proven beta-lactam allergy. Only 7.7% of respondents utilized vancomycin for all patients. Only 11.8% of respondents (N = 496) used prophylactic intravenous teicoplanin and +/- gentamicin for antimicrobial prophylaxis.

Figure 2 illustrates preoperative skin preparation procedures. When hair removal is required for a surgical operation, only 73.6% (CI: 69.6–77.6%, 469) of respondents selected a procedure involving electrical clippers immediately before the operation (Fig. 2a and
Table 2. Results of Survey Identifying Key Areas of Compliance and Noncompliance with CDC, NICE, and SCIP Infection Control Guidelines.

<table>
<thead>
<tr>
<th>Recommended practice</th>
<th>Percent compliance (95% CI), n</th>
<th>Origin of recommended practice</th>
<th>Pertinent references and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative practices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilization of preoperative antibiotics for SCS trials</td>
<td>86.1% (83.0–89.1%), 495</td>
<td>CDC IA and NICE</td>
<td>Bowater et al. (19) demonstrated that antibiotic prophylaxis is effective for reducing the risk of wound infection for all types of surgery.</td>
</tr>
<tr>
<td>Utilization of preoperative weight-based antibiotic dosing for SCS trials</td>
<td>44.8% (40.1–49.5%), 426</td>
<td>CDC IA and NICE</td>
<td>Weight-based dosing of antibiotics is required to achieve therapeutically effective drug concentrations (17,20).</td>
</tr>
<tr>
<td>Utilization of preoperative antibiotics for SCS implants</td>
<td>96.0% (94.2–97.7%), 494</td>
<td>CDC IA and NICE</td>
<td>Bowater et al. (19) demonstrated that antibiotic prophylaxis is effective for reducing the risk of wound infection for all types of surgery.</td>
</tr>
<tr>
<td>Utilization of preoperative weight-based antibiotic dosing for SCS implants</td>
<td>47.7% (42.6–51.4%), 493</td>
<td>CDC 1A</td>
<td>Weight-based dosing of antibiotics is required to achieve therapeutically effective drug concentrations (17,20).</td>
</tr>
<tr>
<td>Appropriate preoperative timing (within one hour prior to surgical incision excluding vancomycin) of prophylactic antimicrobial administration for SCS implants</td>
<td>97.9% (96.9–99.2%), 470</td>
<td>CDC IA, NICE, SCIP</td>
<td></td>
</tr>
<tr>
<td>Hair removal (when required) with electric clippers immediately before the surgical procedure</td>
<td>73.6% (69.6–77.6%), 469</td>
<td>CDC IA and NICE</td>
<td></td>
</tr>
<tr>
<td>Intraoperative practices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilization of double gloving</td>
<td>47.8% (43.4–52.2%), 494</td>
<td>CDC II and NICE</td>
<td>Tannor and Parkinson (21) concluded that the addition of a second pair of surgical gloves reduces perforations to the innermost gloves. Although there is insufficient evidence that double gloving reduces the risk of SSI. NICE recommends wearing two pairs of sterile gloves when there is a high risk of glove perforation and the consequences of contamination may be serious (7).</td>
</tr>
<tr>
<td>Utilization of chlorhexidine gluconate for preoperative skin antiseptic agent</td>
<td>67.7% (63.6–71.8%), 499</td>
<td>CDC IB and NICE</td>
<td>CDC and NICE recommend the use of an appropriate antiseptic agent (povidone–iodine or chlorhexidine containing products). Darouiche et al. (22) demonstrated that preoperative skin preparation with chlorhexidine–alcohol is superior to povidone–iodine for preventing surgical site infection.</td>
</tr>
<tr>
<td>Postoperative practices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application of an occlusive dressing following a spinal cord stimulator trial</td>
<td>79.7% (76.1–83.3%), 478</td>
<td>CDC IB and NICE</td>
<td>CDC recommends applying a sterile dressing for 24–48 hours postoperatively (category IB). NICE recommends interactive dressings. Hutchinson and McGuckin demonstrate lower rates of infection with occlusive dressings (23).</td>
</tr>
<tr>
<td>Application of an occlusive dressing following a spinal cord stimulator implant</td>
<td>68.4% (64.2–72.6%), 469</td>
<td>CDC IB and NICE</td>
<td>CDC recommends applying a sterile dressing for 24–48 hours postoperatively (category IB). NICE recommends interactive dressings. Hutchinson and McGuckin (23) demonstrate lower rates of infection with occlusive dressings.</td>
</tr>
<tr>
<td>Understanding maximum time criterion for defining a deep surgical site infection of an implantable device (one year)</td>
<td>8.35% (5.8–10.9%), 467</td>
<td>CDC</td>
<td>Infection occurs within one year if an implant is in place and the infection appears related to the operation.</td>
</tr>
<tr>
<td>No continuation of antibiotics into the post-operative period for spinal cord stimulator trials beyond 24 hours*</td>
<td>54.5% (50.0–58.9%), 483</td>
<td>SCIP</td>
<td>SCP recommends the discontinuation of antibiotics within 24 hours after surgery.</td>
</tr>
<tr>
<td>No continuation of antibiotics into the postoperative period for spinal cord stimulator implants beyond 24 hours*</td>
<td>52.8% (48.4–57.3%), 477</td>
<td>SCIP</td>
<td>SCP recommends the discontinuation of antibiotics within 24 hours after surgery.</td>
</tr>
</tbody>
</table>

Areas of compliance were defined by ≥80% participant compliance rate for the defined practice. Areas of noncompliance were defined by <80% participant compliance rate for the defined practice. *Examination of survey questions 22 and 23. †Examination of survey questions 24 and 25. CDC recommendations: IA: Strongly recommended for implementation and supported by well-designed experimental, clinical, or epidemiological studies. IB: Strongly recommended for implementation and supported by some experimental, clinical, or epidemiological studies and strong theoretical rationale. II: Suggested for implementation and supported by suggestive clinical or epidemiological studies or theoretical rationale.
Only 67.7% (CI: 63.6–71.8, 499) of respondents used a chlorhexidine gluconate-based product (Table 2). Geographic location and practice type significantly influenced preoperative skin antiseptic agent selection but not procedural volume. A greater number of respondents from the USA (73.5%) in comparison to Europe (49.1%, p = 0.001) but not the other (65.2%) geographical category selected chlorhexidine-based solutions. Respondents from academic institutions (84.7%) also were more likely to use chlorhexidine-based solutions in comparison to private (65.1%, p < 0.001) and hospital-based practices (70.5%, p = 0.007).

Intraoperative Practices

Of the surveyed physicians, 80.5% (CI: 63.9–72.1%, 497) placed an incise adhesive drape with 68.2% (CI: 63.9–72.1%, 497) specifically using an iodophor impregnated plastic incise adhesive drape. During the operative procedure, 47.8% of respondents (CI 43.4%–52.2%, 494) wear two pairs of gloves (Table 2). Double gloving was more common in the USA (49.6%) in comparison to Europe (32.1%, p = 0.005). Practice type also influenced gloving practices with academic physicians (61.6%) double gloving more often than private practice (44.2%, p = 0.001) and hospital-based physicians (43.8%, p = 0.005). Procedural volume did not significantly influence gloving technique.

For irrigation practices, 86.5% of respondents (CI, 83.5–89.5%, 483) irrigated the surgical wound prior to closure with 67.5% (CI, 63.3–71.7%, 480) of respondents adding antibiotic to their irrigation solution. Geographic location, practice type, and procedural volume all influenced surgical field irrigation practices. Individuals from the USA (91.7%) were more likely to irrigate the surgical wound in comparison with Europe (57.9%) and the other (69.6%) geographical categories (p ≤ 0.001, p = 0.011, respectively). Academic (92.9%) and private practice (88.8%)-based physicians were more likely to irrigate the surgical wound when compared with hospital-based physicians (75.5%; p < 0.001, p = 0.002, respectively). High-volume SCS trial responders (93%) irrigated the surgical wound following an implant more frequently than medium volume responders (82.3%) but not low-volume (90.1%) responders (p = 0.013). Irrigation practices were not significantly influenced by implant procedural volumes. Respondents from the USA (83.2%) and the other (62.5%) geographical category added antibiotics to the irrigation solution more frequently than respondents from Europe (18.2%; p ≤ 0.001, p < 0.001, respectively). Private practice physicians (82%) utilized antibiotics in the irrigation solution more frequently than hospital-based (62.3%; p = 0.002) but not academic-based physicians (76.9%).

For wound closure, 478 participants described their practices with the following breakdown: 29.5% absorbable sutures and liquid skin adhesive, 29.3% absorbable sutures, 27.4% surgical staples, and 13.8% nonabsorbable sutures.

Postoperative Practices

Generally, about 50% of respondents continued antibiotics into the postoperative period; 50.5% (CI: 46.0–55.0%, 483) for spinal cord stimulator trials; and 57.4% (95% CI: 53.0–61.8%, 477) for implants. Geographic location, practice type, and procedural volume did not significantly influence the decision to continue antibiotics into the postoperative period for spinal cord stimulator trials or implants. For the respondents that continued antibiotics postoperatively, a large proportion continued antibiotics for greater than 24 hours, 90.2% (CI: 86.4–93.9%, 244) for trials (Fig. 3a), and 82.1% (CI: 77.6–86.7%, 274) for implants (Fig. 3b). Although practice type and procedural volume did not significantly influence the number of respondents that continued antibiotics for greater than 24 hours, geographic location did significantly influence this practice. For both spinal cord stimulator trials (p = 0.007) and implants (p < 0.001), respondents from Europe (25.0%) continued antibiotics for greater than 24 hours significantly more than respondents from USA (6.9%).

Occlusive dressings were utilized extensively for both spinal cord stimulator trials: 79.7% (CI: 76.1–83.3%, 470) and implants 68.4% (CI: 64.2–72.6%, 469). Practice type and procedural volume did not influence the use of occlusive dressings for both trials and implants. However, geographic location was found to influence the use of occlusive dressing with more individuals from USA (81.6% for trials and 70.3% for implants) placing an occlusive dressing than Europe (67.3% for trials and 51.8% for implants) for both spinal cord stimulator trials (p = 0.033) and implants (p = 0.012).
Areas for Future Research for Infection Control Practices

Colonization with *Staphylococcus aureus*, both MSSA and methicillin-resistant MSRA, has been shown to be an independent risk factor for SSIs (24). Participants were surveyed regarding decolonization practices; 6.6% of respondents used mupirocin, and 37.8% of respondents used chlorhexidine baths independently of a preoperative test result for *Staphylococcus* species. A limited number of respondents routinely tested preoperatively for MRSA (25.1%) and MSSA (10.8%). Figure 4 displays preoperative decolonization practices for patients with a positive screening test for both MRSA (Fig. 4a) and MSSA (Fig. 4b). When patients had a positive screening test for MSSA, 44.0% of respondents did not make any clinical changes based on the test on finding. Whereas, when a positive screening test exists for MRSA only, 14.4% did not make any clinical changes based on the test finding.

Low procedural volumes and extended operative time have been suggested as possible risk factors for SSIs (25–28). Figure 5a (trials) and b (implants) illustrates the significant relationship between volume of trial and implant procedures performed and reported length of the implantation surgery. The number of performed trials (Fig. 5a, $p < 0.0001$) and implants (Fig. 5b, $p < 0.0001$) did significantly influence operative times with higher procedural volumes being associated with lower surgical times. Operative times increased for those physicians performing less than 10 SCS trial or implant procedures per year. Figure 5a shows that approximately 57% of those reporting high procedural volumes (greater than 40 procedures) complete an SCS implant within 60 min. Conversely, about 75% of those reporting low procedural volumes (less than 10 procedures) for trials report operative SCS implant times in excess of 60 min. This significant trend is also observed for those performing high and low volume procedures for the placement of an implantable device (Fig. 5b).

DISCUSSION

To our knowledge, this is the first international survey investigating infection control practices for SCS. The results of greater than 500 practicing neuromodulation physicians presented here provide insight into current infection control practices for both SCS trials and implants. The main findings of our survey are 1) low compliance rates for the defined practice recommendations from the CDC (6), NICE (7), and SCIP (15,16); 2) areas for improvement in infection control practices exist for the preoperative, intraoperative, and postoperative periods; 3) significant geographic and practice type variations exist for particular infection control practices; and 4) future research for neuromodulation infection control practices is warranted.
As with any survey, limitations exist. In this survey, the absolute response rate could not be calculated because of the overlapping distribution lists. Although absolute response rate cannot be calculated, the approximate response rate can be inferred from the available survey email open rates which were between 29% and 36%. These rates would be comparable to response rates (8% to 44%) reported for other web-only surveys using probability samples and consensus data (29). In addition, previous interventional pain web-based surveys on anticoagulation and prescription patterns demonstrated a response rate of 14% and 13%, respectively (29,30). A majority of the respondents were from the USA; therefore, additional surveys will be needed to further understand international infection control practice patterns. Since infection rates for practitioners were not collected, the direct relationship between practice patterns and infection rates cannot be inferred. Even though the survey has limitations, the significant response of greater than 500 practicing physicians from different demographic settings does provide a broad overview for current infection control practices for neuromodulation.

Our data indicate, for physicians performing both SCS trials and implants, low compliance rates currently exist with the defined CDC- (6), NICE- (7), and SCIP- (15,16) recommended infection control practices. Only four out of the 15 (26.7%) questions examining specific practices recommend by these guidelines were associated with a compliance rate of ≥80%. Areas that require further improvement exist in all portions of the surgical care continuum. The CDC through a four-tier ranking system (definitions provided in Table 2) published guidelines for the prevention of SSIs in 1999 which were updated in 2002 to include hand hygiene (31). In the survey presented here, low compliance rates existed for both IA and IB recommendations. In addition, only 8% understood the criteria for defining a deep incisional SSI (i.e. infection occurring within one year of an implant and appearing related to the operation). A superficial SSI, in contrast to a deep SSI, occurs within 30 days after the operation and involves only the skin and subcutaneous tissues of the incision. In 2006, the SCIP was implemented through a national quality partnership in the USA emphasizing 20 measures of which six specifically focused on postoperative infection (32). Three of the
SCIP infection prevention measures were examined here including administration of prophylactic antibiotics within one hour of surgical procedure (two hours for vancomycin), discontinuing prophylactic antibiotics within 24 hours after surgery (48 hours after cardiac surgeries), and hair removal at the site of surgery with clippers or depilatory. Only one of the three SCIP measures in this survey was associated with a compliance rate of \(\geq 80\% \) (i.e. appropriate timing of antibiotic administration).

Although it may be expected that physicians participating in the survey in areas outside of the USA may not be as aware of evidence-based guidelines recommendations by the CDC and SCIP, it should be noted that more than 80% of the survey responders were from the USA, and many of the NICE recommendations are similar to the CDC and SCIP recommendations. Nine of the 15 recommended practices examined here are recommended by NICE, and only four of the nine were associated with compliance rates \(\geq 80\% \). In addition, although SSI rates for each respondent were not provided, it is concerning that compliance rates for evidence-based practices were not higher. Adherence to evidence-based guidelines has been shown to be associated with a lower probability of developing a SSI (32).

Our data indicate that simple measures could be taken to improve infection control practices in the preoperative, intraoperative, and postoperative periods. Specifically in the preoperative period, further education on the importance of weight-based dosing of antibiotic prophylaxis and hair removal strategy is warranted. Antibiotic prophylaxis has been shown to be an effective intervention for preventing postoperative wound infection, independent of surgery type, resulting in an approximately 50% reduction in the incidence of wound infections (19). Furthermore, failure to optimize antimicrobial therapy has been shown to increase infection risk by two- to six-fold (33). In order for antimicrobial prophylaxis to be effective in the prevention of SSIs, serum and tissue levels must exceed the minimum inhibitory concentrations for the organisms likely to be encountered during the operation (17,20). Unfortunately, in this survey less than 50% of respondents weight-based dose antibiotics for spinal cord stimulator trials and implants. For hair removal, removal by electric clipper has been shown to be
superior in reducing SSI in comparison with removal by a razor (34,35). The survey data here indicate that approximately 20% of responders are still shaving.

During the intraoperative period, areas for practice improvement include double gloving and the selection of a preoperative skin antiseptic agent. A second pair of surgical gloves has been recommended when there is a risk of glove perforation, and the consequences of contamination may be serious (7). Both of these situations exist when performing a neuromodulation technique. Although there is insufficient evidence to definitively conclude that double gloving reduces the risk of SSIs, it can be concluded that the addition of a second pair surgical gloves reduces perforations to the innermost gloves. In addition, 83% of glove perforations are unnoticed, and risk of infection is two times higher when comparing perforated with not perforated surgical gloves (21,36). Both povidone–iodine and chlorhexidine-based products are used as skin antiseptic agents. In multiple clinical studies, chlorhexidine-based products have been shown to be superior for reducing and

Figure 5. Procedural volume and surgical time a. Relationship between trial volumes and surgical implant operative times ($N = 461$). b. Relationship between implant volumes and surgical implant operative times ($N = 466$).
eliminating bacteria and reducing SSIs (22,37,38). Darouiche et al. (22) demonstrated that the overall rate of SSIs was significantly lower in the chlorhexidine–alcohol group than the povidone–iodine group, 9.5% vs. 16.1%, respectively.

In the postoperative period, areas for improvement include the use of occlusive dressing and the continuation of antibiotics into the postoperative period. Hutchinson et al. in a systematic review showed a substantial decrease in the rate of infections when an occlusive dressing was used postoperatively in comparison to a nonocclusive dressing (2.6% vs. 7.1%) (23). It has been proposed that occlusive dressings allow for faster rates of re-epithelialization and collagen synthesis. In addition, the dressings create both a hypoxic environment and a physical barrier to impede and limit bacterial growth. Rudiger and Thomson (39), also suggested that surgical postoperative dressings may significantly influence the infection rates of spinal cord stimulators. Consistent evidence has been demonstrated for limiting the duration of postoperative antibiotics for spine surgery, orthopedic, and cardiac surgery. In addition, postoperative continuation of antibiotics following spine surgery inhibited normalization of body temperature and elevated C-reactive protein levels (40).

Differing needs may exist for educational optimization of infection control practice in diverse demographics settings. Compliance rates significantly differed between academic, hospital-based, and private practices for specific interventions including weight-based dosing of antibiotics, skin antiseptic preparation agent selection, irrigation practices, and double gloving. In addition, practice patterns were different between participants from USA and Europe for specific interventions including antibiotic timing, hair removal, skin antiseptic preparation agent selection, double gloving, irrigation, and postoperative antibiotic continuation. Future studies are warranted to further define the educational needs of practicing physicians based on geographic location and practice type. Furthermore, the relationship between the adherence to best practices for infection control and SSI rates between different demographics settings deserves future consideration.

Best practices from other surgical fields were examined in this survey that have been shown to significantly reduce SSI rates. One of those areas is preoperative decolonization of nasal carriers of both MRSA and MSSA (41). Greater than 80% of healthcare-associated Staphylococcus aureus infections originate from endogenous sources (41). Decolonization of MRSA and MSSA carriers with mupirocin nasal ointment and chlorhexidine washings has been shown to significantly reduce SSI with other implantable surgeries including total joint arthroplasty (42). Our survey indicates a currently limited use of preoperative testing for both and MSSA and MRSA and decolonization protocols. The ability of decolonization protocols to influence SSIs in neuromodulation should be examined.

Recently, the Neuromodulation Appropriateness Consensus Committee (NACC) has called for improvements in neuromodulation education and training. In other surgical fields, low procedural volumes and extended operative time have been suggested as possible risk factors for SSI (25–28). Recently, a retrospective review on intrathecal drug delivery and SCS implants for cancer patients suggested that extended operative times may be a risk factor for SSIs (43). Our data indicate a significant relationship between procedural volume and operative times. If the relationship between infection rates and procedural volumes and extended operative time holds for the field of neuromodulation, then efforts should be placed on methods to reduce operative time and improve procedural proficiency.

In conclusion, evidence-based infection control policies are critical for the field of neuromodulation. The large international survey presented here provides significant insight into current practices and will assist in the development of specific neuromodulation infection control policies. Based on the survey results, further education is warranted on infection control strategies for physicians performing SCS trials and implants to improve practice deficiencies. Future research and consensus are needed specifically for SCS infection control practices to improve patient safety and the clinical impact of this important therapy. The data presented here will help guide this development process.

Acknowledgements

We are grateful for the assistance of the pain societies (AAPM, ARSA, ESRA, INS) and device manufacturers (Boston Scientific, Medtronic, and St. Jude Medical) in the distribution of the survey. In addition, we are in debt to the practitioners who took time from their busy schedule to answer the survey.

Authorship Statements

Dr. David Provenzano, Dr. Timothy Deer, Dr. Amy Luginbuhl Phelps, Zachary Drennen, Dr. Hayek, Dr. Thomson, Dr. Samer Narouze, Dr. Maunak Rana, Tyler Watson, and Dr. Asokumar Buvanendran all assisted in the research design, interpretation of the data, the drafting of the paper, and reviewing the manuscript critically. All authors had complete access to the study data. Dr. David Provenzano, Dr. Amy Luginbuhl Phelps, Zachary Drennen, and Tyler Watson had a significant role in data collection and analysis. Dr. Amy Luginbuhl Phelps also provided statistical support.

How to Cite this Article:

REFERENCES

APPENDIX

Appendix 1: Survey Questionnaire

1: Do you utilize preoperative antibiotics for spinal cord stimulator trials?
1) Yes
2) No

2: If yes to question 1, do you utilize weight base dosing? If no to question 1, please select not applicable.
1) Yes
2) No
3) Not applicable

3: Do you utilize preoperative antibiotics for spinal cord stimulator implants?
1) Yes
2) No

4: If yes to question 3, do you utilize weight base dosing? If no to question 3, please select not applicable.
1) Yes
2) No
3) Not applicable

5: What is your time frame for administering perioperative antibiotics (excluding vancomycin)?
1) 1–30 min prior to the surgical incision
2) 31–60 min prior to the surgical incision
3) >60 min prior to the surgical incision
4) After incision

6: If hair removal is required prior to surgical intervention, how and when do you primarily choose to remove the hair?
1) Shaving >24 hours before the operation
2) Electric clippers >24 hours before the operation
3) Shaving immediately before the operation
4) Electric clippers immediately before the operation

7: Is it your routine practice to preoperatively test for methicillin-resistant Staphylococcus aureus (MRSA) colonization via nasal swab?
1) Yes
2) No

8: Is it your routine practice to preoperatively test for methicillin-sensitive Staphylococcus aureus (MSSA) colonization via nasal swab?
1) Yes
2) No

9: If you have a positive test for MRSA in a patient without a beta-lactam allergy, how do you manage? Choose all that apply.
1) Mupirocin ointment
2) Chlorhexidine baths
3) Vancomycin administration for antibiotic prophylaxis
4) Teicoplanin administration for antibiotic prophylaxis
5) Gentamicin administration for antibiotic prophylaxis
6) No changes are made based on test finding

10: If you have a positive test for MSSA in a patient without a beta-lactam allergy, how do you manage? Choose all that apply.
1) Mupirocin ointment
2) Chlorhexidine baths
3) Vancomycin administration for antibiotic prophylaxis
4) Teicoplanin administration for antibiotic prophylaxis
5) Gentamicin administration for antibiotic prophylaxis
6) No changes are made based on test finding

11: Do you use any of the following routinely, independently of a preoperative positive test result for Staphylococcus species? Choose all that apply.
1) Mupirocin ointment
2) Chlorhexidine baths
3) Vancomycin administration
4) None of the above

12: What are your indications for the use of prophylactic intravenous vancomycin? If this question does not apply to you, choose not applicable and proceed to the next question. Choose all that apply.
1) Patients colonized with MRSA (detected during screening)
2) Patients with history of infection with MRSA
3) Institutionalized patients (nursing home, dialysis, etc.)
4) Inpatient hospitalization within the last year
5) Patients with proven beta-lactam allergy
6) All patients
7) Not applicable

13: What are your indications for the use of prophylactic intravenous teicoplanin and +/- gentamicin? If this question does not apply to you, choose not applicable and proceed to the next question. Choose all that apply.
1) Patients colonized with MRSA (detected during screening)
2) Patients with history of infection with MRSA
3) Institutionalized patients (nursing home, dialysis, etc.)
4) Inpatient hospitalization within the last year
5) Patients with proven beta-lactam allergy
6) All patients
7) Not applicable

14: Which preoperative skin antiseptic agent do you most commonly utilize prior to surgery?
1) Povidone–iodine
2) Chlorhexidine gluconate
3) Isopropyl alcohol
4) A combination of both Povidone–iodine and isopropyl alcohol
5) A combination of both Chlorhexidine gluconate and isopropyl alcohol
6) Other (please specify)

15: Which of the following steps do you perform following skin antisepsis to cover the surgical field? Choose all that apply.
1) Placement of an iodophor impregnated incise adhesive drape
2) Placement of a non-impregnated plastic incise adhesive drape
3) An incise adhesive drape is not placed

16: What type of trialing and implantation pathway do you most commonly follow?
1) Separate trial and separate full implant
2) Staged trial and completion implant

17: For surgical gloving, do you utilize?
1) Single gloving
2) Double gloving

18: Do you irrigate the surgical wounds prior to closure?
1) Yes
2) No

19: If yes to question 18, do you add antibiotics to the irrigation solution? If no to question 18, please select not applicable.
1) Yes
2) No
3) Not applicable
20: For skin wound closure, do you utilize?
1) Surgical staples
2) Absorbable sutures
3) Nonabsorbable sutures
4) Absorbable sutures and liquid skin adhesive

21: What is the typical operative time associated with the implantation stage?
1) ≤60 min
2) >60 and ≤90 min
3) >90 and ≤120 min
4) >120 min

22: Do you continue antibiotics into the postoperative period for spinal cord stimulator trials?
1) Yes
2) No

23: If yes to question 22, during what time frame do you typically administer the antibiotics? If no to question 22, please select not applicable.
1) ≤24 hours
2) >24 to ≤48 hours
3) >48 to ≤96 hours
4) Entire duration of trial
5) Not applicable
6) Other (please specify)

24: Do you continue antibiotics into the postoperative period for spinal cord stimulator implants?
1) Yes
2) No

25: If yes to question 24, during what time frame do you typically administer the antibiotics? If not to question 24, please select not applicable.
1) ≤24 hours
2) >24 to ≤48 hours
3) >48 to ≤96 hours
4) >96 to ≤168 hours
5) >168 to ≤336 hours
6) Not applicable
7) Other (please specify)

26: What type of dressing do you apply to the surgical incision following a spinal cord stimulator trial?
1) Occlusive
2) Nonocclusive

27: What type of dressing do you apply to the surgical incision following a spinal cord stimulator implant?
1) Occlusive
2) Nonocclusive

28: What is the maximum time criterion for defining a deep surgical site infection (an infection extending into the muscle and fascia layers) for an implantable device?
1) 30 days after surgery
2) 90 days after surgery
3) 180 days after surgery
4) 365 days after surgery

29: How long do you wait to progress forward to a permanent implantation following the removal of the trial lead?
1) ≤1 week
2) >1 week to ≤2 weeks
3) >2 weeks to ≤3 weeks
4) >3 weeks

30: What type of practice are you in?
1) Private solo practice
2) Private group practice
3) Academic practice
4) Hospital based program

31: How many spinal cord stimulator trials do you personally perform per year?
1) ≤5 trials
2) >5 trials to ≤10 trials
3) >10 trials to ≤20 trials
4) >20 trials to ≤40 trials
5) >40 trials

32: How many spinal cord stimulator implants do you personally perform per year?
1) ≤5 implants
2) >5 implants to ≤10 implants
3) >10 implants to ≤20 implants
4) >20 implants to ≤40 implants
5) >40 implants

33: What is your practice geographic location?
1) North America—USA
2) North America—Other
3) South America
4) Europe
5) Africa
6) Asia
7) Australia